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NOTE ON ASYMPTOTIC EXPANSIONS
Jurgen Moscr
§l.  We consider é system or linear differential squations which depends

on a parameter s

dy . -n
(1) Gt T AL Ay = e T A F e A+l )}y
when v = (y;,..... T 15 an n-vector and Av n x n matrices. If

tho parameter ¢ is considered small {t {s well known that the solution of
such a systein can be described by asymptotic -- 1n general divergent ~
series expansjions. The expansions contain axcert for powers of o« with
rational exponents exponentiai terms of the form

ex(t, *) 1
whore x(t,¢) 1s a polynomial in ‘q , g being a positive {nteger. This
theory has a vast literature for ‘whick we retfer to the paper of H. L. Turritin
[t}. Whiie tn many expositions of tiis sublect strong assumptions on the

eigenvalucs of Ag{t) (u.g. to be distinct and diffcrent from zero) limit

tae generality considerably, it is the aim of Turritin's paper io give a

other hand, to many involved matrix calculations and the reduction is
rather complicated. The main difficulty seems to stem from nilpotent
matrices Ag(t).

In this note we smdy" a guestion which is related to the presence
of nilpotent matrices Ag(t) and which aims at the description of the prin-
cipal part of the-exponenticls x({t, ¢) (i-e. the terms of highest ofder in

I
..l < R
. ,) It {s known that in casc the eigenvalues of Ag(t) are distinct and



different from zero that
dx

. -p
dt

= !
kv\t)( + ...

wherc the xv are the eigenvalues of Ao.(t) . It is surprising that Rv ,
which are invariants under aimilarity tranzformuations, play a role In the
asymptotic expvansion and, therefore, shoulu be invariant under coordinate
transformations
(2) y = T{(t, e}z .
Such a transformation maps (1) into

dz

a‘{' = Bit, €)z

where
03) g -1 lar - 7.
Thic equation (3) dcfines an cquivalence boeiween A and B which
differs from a similarity transformation. It 15 our aim to characterize
the principal part of x(t, «) 1nvari-:mtlyl under (2) .

In (2) wn adrit power sorias c; (4 =1, 2, ..) sothat

B =« " {Bo + ..}

is a series in fractional powers of ¢ . The rational number m will be

called the order of B . It is our aim to minimize the order m under

transformations (2) and we define

B = Min m

B ~ A (if positive, otherwise p = 0)

as the minimal values of m . That this minimum {s attained will be
shown by a construction which allows {ts computation.

A matrix B is called minimal #f m = p . It will be shown that for
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g >0 B is minimal {f, and only if

| f(A, %, €) = det (A\I - Bg) #£r "
and that this pclynomial 7f(x, X, ¢) 18 invariant under the equivalence (3)
This result can be iuterpreted in the following way: The equivalence (3)
devistes from a similarity and, In fact, theo additional term T l‘i‘ might
inireduce terms of higher order than ware present in A . If, howcever,
A 1o minimal, then these termg are necogsarily nilpotent. Conversely, if
the highest order terms in A are nilpotent, then they can be removed and
p diminished.

Wo discuss a trivial exampie: The matrix

At o) = ‘-pCz: f)

is nilpntant, f e, all elgenvélues zero. This does not Imply ihat the
asymptotic expansion s free from exponential torms (i.e. x = 0) and, in

fact, cne itnds a so',-%tion

t -% 'gt,

Y = exp (e ) Y, = (te ®1) exp (e )
Thigs showe that ¢ = ‘g which van be easily obtained by the method to be
discussed.

The: following considerations ara algebralc in nature and, therefore,
all serfes can be considered converyen.. This result can be used in a
gonzral rheory of asymptotic expansions which will not be done here, since

a treatiment of this kind can be found 1n Hukuhara's paper [2] % .

¥ | am gratsful to Professor Sibuya for this reference.
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§2 Necessary aud sufficient conditions for minimal B

To simplify the following consideraifons, we assume all clements
of the matrices Av(t) to be meromorphic funi:tions of t *# ., The complex
variable ranges over a fixed domajnn D

We denote by Foq the space of functlions

14

" v

£ o) = QY fv(t)4q
V-0

where fv ,  Q(t) arc analytic in T and the serles converges tn lel<ey
t & D . These functlons form a ring and quotienis of such functiong will

have the form

v
13 u
f-Q° ) f(t)e
V=—vyg
which forias the Space rd . Sfwflerly, the matrices T , whese elements
.4 {
Yie in Foq , F7 , detine the spaces Miz R Mq raspoectisely, The union

v

ofail MY for g - I, &, .. wili be denotod by M .
The: important oroperty of I% 15 that addition, subtraction, division

und differentiation does not lead out of },q

. rn
Amatrix T & My , i.e.

1

00 =

o v q

IR
v=0

-1
ts celled aunit1f T also Mes In M & . This is the cas«a {f, and only
I ¢
if,

det Tolt) #0 tn D .

* Under this assuraption it {8 rot necessary to shrink the t-domain which
is usually done in order to avold that eigenvalues cross cach other.
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lemma 1: If detT ¥ 0 is an element of M2 , then it can ve written in
the form
a
{4) T = Pt e) ¢ Qt, «)
where P , Q areunits in Mj (l.e. det P,# 0 , det Q,#0) aund

a2

a
= diag(cl,- ,..-,(un) (“15025"'5“")

and - qa v are integers.

Proof; Without loss of generality .- csi assume q = 1 ; otherwise
1

let n = Iq .

The matrix Q wili be built up from "elementary matrices” consist-
ing of permutation matrices (independent of t, ()} whose determinart is
%] and matrices which differ from the unit matrix in one off diagonal sle~
ment, All these matricos as well as their product are units, since their
determinant is #1 ,

Now dstermine a, as the greatest integer, such that e T s a
power series in ¢ |, l.a. ¢ Ut & MY . Thus the constant term in
s.—ul‘r is non-z&rc. Applying a permutation matrix @ , we can achieve
that V

TQ, = ta‘(s, y B2 5 eue sn)
where sv = sv(t, €} are column vectors containing no negative powers
of ¢« and 3,(t,0) &0 .
Now choose ap as the maximal integer such that
TQ = (¢Mr, M, «®r., ..., eu'rn)
where Q {s any product of elementary matrices and ¢, are column vec-

tors, Obviously, a;> a; . After having defined 1;, ..., o9,y we
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maximize a, under all products of elementary matr.caes Q such that

1
a a a Q

— o - =1 ] 1 ) J

(5) TQ = (€ "Dy jmwees, € pl'l , € pl s € pl+l y revy € .pn)

and the elcrﬁents of .hese column vectors belong to
The existence of 5uch a maximai a, foiiows from the assumption
det T = c(t)e’ +... <cl)%0
y gives an upper bound for a, since

t

a; + a +...+al_l+(n-l+1)u£_<_y .

One proves by induction that the rank of the matrix
(Pi(,0), ...., pn(t, 0})
over the mecromorphic functions is at least £ . Otherwise one can
achicve by an clementary matrix that pv*(-, J) 5 0 for some v¥ </t
which means that a, can be enlarged. Thus for /) = n onc has
TQ = (P, +-ov s P) A T
det P(t,0)# 0 .
Observe that with Q also O_1 1s an elementary matrix, hence a unit,
This proves the Lemma.
Remark: The above representation is not unique but it is casily seen that
the a, are unique.
Theorem 1: Let
A= P (Aolt)t....}
{6)
l B = « P (Bo(t) 4....}

be two matrices in M which are equivalent, I.e. related by (3) with a

TC M, p is assumed to be a positive rational number.
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Then

det (A1 - Ag(t)) = det (\I - Bo(t))
1 1

a Q2
Proof: Assume A contains integer powers of ¢ ! and B in ¢ then

define n by
e = n‘h Q2
so that ‘A , B contain only integer powers of n . Let T be the trans-

formation relating A and B by (3) . Reprcsent T in the form (%)

T = PquO
and lot

2=rplap-ptp

8-080"'+6q"
then A is equivalent to A and B equivalent to B . Moreover, since
P ., Q arc units, F‘_1 , Q-l are power series and so are the terms

P-I'P and (:)Q.l . SInce p -~ o it follows that

{Pe-le Pp +...)

- - -1
B -+ « 1Qo Bo Qo +...)

>
i
-

and

1]

((dcl (M- A} = det (NI - Ag)
(7)
det (AT = Ba)

u

kdet (Al - Eg)

-

Finally, A , B are related by the similarity transformation
B = ?'i—“ A “u
from which it follows that the first determinant in (7)

det (A1 - A) (o = det (AI- Ag)
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agrees with the second, which proves the Theorem 1 .
Definition: A matrix
A= a'b{Ao +...}E M ; p>0
is called minimal, if foreach T © M
B =T AT-T T = ¢ ™ (B +..}
one has
m2p>0 .
Otherwise B is called not minimal, for p>0 . Fér p>0 A is defined to

be minimal unconditionally.

Consoquence of Theorem 1: I A {8 not minimal, then Ay is nilpotent.

Proof: Since A is not minimal, there is a T € M such that
B=T AT-71 7T
cloes not contain terms of order > m 1n ! ,» l.e, in (6) one has
Bo=0 . Hence by the Theorem 1
det (\I- As) = det (\I-0) = A" |
which expresses that A; is nilpotent.
Theorom 2; Every matrix
A=z TP am...1EM
is equivalent to a minimal matrix B .
Proof: This theorem requires a construction and quéranteeé the existence
of a minimal value » of m . We make use of a procedure which has

been used by Hukuhara [2] in a similar connection. The use of Theorem !

will simplify Hukuhara's Lemma,
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It 18 well known that each component of y satisfies a single dif-

ferential equation of order € n , to construct such a differential equation

for, say, y;, we sei

Z; = Y)
dy, n
=g -vg,l a‘v (t,e)yv
and express y;, , y: Intermscf z; , 2z if a;,#2#0 . I alv*to for

some v®> 1 ienumber y, , ..., Yy to reduce this to the previous cese.

. 9y

at a, , Yy wbhich represents

Ifal 20 for v = 2 , ..., n 2
v
the desired differontial equation. Otherwisc let
cdz oy Vi
Zy ¥ at = )_1 y_lv}’v + ‘Jdlvyv
which {s a linear combination of v; , y2 ,..., Ya and hence a linear
combinationof 2, , 2z , Y3 , ..., Yo If the coefficients of y; ,

ey yn are not all zero, we can assumag by rocnumbering that the cocfficient

of yy 18 not tdentically zero, which allows to express y; , ¥z , Y3 In

terms of 2, , Zz, , 2y , Z¢ , .., Y, -
This procens of alimination can ke continued until —i—?" is a linear
combinationof z, , .., z_ - I v = n , oneovctains for z a system
2 = Bz
wher e
- A
(0 1 0 0
[y 1] i
1
(8) B =
1
\ bT be
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If, however, v <n one can continue the same procedure by defininy

VA =
w1 - Yo,
introcucing
dz
_ T+1
a2 T T *

and eliminating the further Y, for v > . This leads to a system

z = Blt,e) z

where
/
By, 0 0
By Bz
(9) B -
0
Bkl B_xx
\ -
Here the: va (v = 1 ,...%) are square matrices of the type (8)

while the BWL (v » 1)} contein nonzero eleinents unly in the last column.
The variables v and 2z aere related by lincar equations, the
cocfficlents of which are obtalned irom those A ,*,";' addition, multiptication,
division and diffcrontiation, hence beiong to t'q it A= Mr". Since the
relatjon is invertible, we have
y = Tz
with

(10) T MY getTwo

l.e. A and B arc cquivalent.
It 1s easily shown that B can be transformed into a minimal matrix

by a diagonal matrix of the form
E = (N Yn )

) see s €
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First, one can easily achieve that va for v > 4 does not contain
negative powers of ¢ by a transformation
{11) E = dlag (E;, N E;. g ey EKK)

where the [ are square matrices {corresponcing to the block representa-
- vv

tion (9) of B) and

The matrix E-l B E is ubtained from B by replacing Bvil by va.( .

Choosing for r.-v an appropriate incrcasing sequence, onc can achieve that

B ¢ M7 .
VR
If in (9) no va contains negatfve powers of ¢ , then B (& M?,
and B 1s minimal by decfinition, Otherwise, (f B , which s of the
vv
form (8) , cortains negative powers of ¢ , determine the smallest
rational number y  such that
V‘{v P4 T
by« , bye ™, ..., b ™
contain no negatlve powers of ¢ . Thus at izast onc of these terms dnos
not vanish for ¢ = 0 . By definition, vy » 0 Is a rational number. Let
v
Y = Maxy,
and apply the transformation with

-Y
E = diag(l, € , ...,

Since
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0 1
i
. ’ 1
E '8 E =Y
vy vy vv ,
1
c_r C;
with
¢ = Db e"AY
1) B
and at least one of them does not vanish at « = 0 . Since the character-
Y -1 T T-1
istic polyrnomial of ¢' . E B E iB A —¢, A - ....~C ftis
vv vy vy - T
not identically A for € = 0 and for some v . Thux we obtain
-l -
E BE =23 (Cte.non}
when

dot (A1 -Co) A"
wiidch proves that E-l B £ is minimal. From theorem 1, it follows that
Yy > p . This proves thoorem 2
_Déﬁgi_t}_o_n_: For a glven mat-ix A le:

B=e¢" {(Bot.oo.)

be an equivalent minimal one. Then define

[m tf m>o0

me=pA) = g meo

The number i+ has by definition an invarlant meaning. In fact, it
is the minimal order of matrices which are eyuivalent to A . As a conse-

quence of the proof of theorem 2, we show

4
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Theorem 3: For a given {not necessarily minimal) matrix A & Ar‘_q one can

compute p = up(A) by transforming 1t into the form (9) by a transforma-

tion T € MY and determining the smallest m > 0 such that
det A1 «"B)E M,

Then m = p

Procf; Since

is minimal it follows that

A" mdet M- Co) = det (1= & B)| o

which implies m = u .

Theorem 1 implies that the characteristic polynomi&!l of a minimal
matrix is independent of the representation if u > 0, which proves the
invariance of the nonzero eigenvalues of a minimal matrix under equiva-
lence.

It 18 easily verified that these nonzeroc eigenvalues agree with

M 9

" where y was defined in the introduction, If p = §
t e = ¢

the eigenvalues do not play any role, in fact, in that case A is equiva-

lent to B50 . To prove this statement let

dy _
dt = Ay

where A € M% does not contain negative powers of ¢ . It is known

that in this case the matrix solution of

d e =
GY=AY:Y = Ifor « =0

belongs to M% , and is a unit, since detY, = 1
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If one makes the transformation

4

every solution y goes over into a vector z which is independent of t |

namely
hence

which proves the statement

§3  We mention without proof that one can oblain the principal part of
those cxponeﬁtlals ¥ which start with terms of lower order thanr <M
by refining the above method. Instead of minimizing the order of A
as defined above, one can minimize a "matrix order* or order which is

defined as follows: Assuming for simplicity det A #+ 0 wec can represent

A by the previous Lemma as

~m

P ¢ Q
where m = diag{m; , my , .., mn) m>m>....2 m.o- Ordering
m lexicographically, i.e.

m>Mf {Hm =M v<k

one can find conditions on minimal matrix m which lead to a description

the principal parts of the other exponentials.
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